

What are they? Where do they come from? Let's measure for ourselves!

Mark Adams University of Illinois at Chicago QuarkNet at Fermilab

Outline

- Describe Cosmic Rays Astronomy
- What do we see on the Earth's surface?
- Cosmic Ray Muons
- QuarkNet Detector
- Analysis Speed of Muon
- Use Time of Flight between detectors
- Further studies?

QuarkNet Outreach

- High Energy Physics
- CMS, ATLAS and ALICE at the LHC CERN p-p 13 TeV
- Neutrino experiments at Fermi
- Cosmic Ray Muons
- HEP detectors and techniques brought to your school (supernovae are your accelerators)
- Muons are fundamental in all of these areas

Today's Questions

What can you study with **Cosmic Rays** using QuarkNet Detectors and e-Lab analysis tools?

Cosmic Ray Discovery

- Cosmic Rays discovered in 1912 (Victor Hess) in balloon experiments
- Radiation higher at 5000m than at sea level – implies source hitting atmosphere
- No difference during partial eclipse – implies Sun not the source

A Cosmic Ray from space hits the upper atmosphere and creates an Air Shower of elementary particles

Red tracks represent muons

Mark Adams QuarkNet Cosmic Rays

Cosmic Ray Rates Hitting the Atmosphere

How High is High Energy?

- Sun peaks with photons of energy 1 eV -atomic energies
- 1000 eV x-rays are from inner shell electron state
- 1,000,000 eV nuclear energy transitions (MeV nucleus and energies in sun's core)
- 1,000,000,000 eV gamma rays (GeV)

Energy Scales

Question – How are x-rays produced?

- A. Dental office
- B. Argonne Photon Light Source
- C. Inner shell transitions in Heavy Elements
- D. Stopping charged particles

X-rays from accelerated particles

- A. Dental office HV accelerates electrons which hit metal plates, giving off x-ray photons
- B. Argonne Photon Light Source Large machine accelerates electrons; magnets wiggle electron paths Key to Covid-19 research
- C. Inner shell transitions in Heavy Elements excited electron falls to lower inner shell state
- D. Stopping charged particles charged particles crash into material and slow down dramatically (accelerate), radiating x-ray photons –
- E. Is why LEP(e+e-) didn't discover Higgs in '90s

Cosmic Ray Sources

Ca

Galactic - Supernovae

QuarkNet

Extragalactic – Active Galaxies

Core of Galaxy NGC 426I

Hubble Space Telescope Wide Field / Planetary Camera

Ground-Based Optical/Radio Image HST Image of a Gas and Dust Disk HST Image of a Gas and Dust Disk Ground-Based Optical/Radio Image HST Image of a Gas and Dust Disk HST Image of a Gas and Dust Disk

Cosmic Ray Summary

Cosmic Rays are high energy nuclei (mostly proton) accelerated in some extreme condition – eventually hitting Earth's atmosphere Galactic – Exploding massive stars Extragalactic – Massive Black Hole accelerates particles Weird that source of this energy is Gravity Charged – trajectory bent by magnetic fields Very poor telescope

Muons?

• Why haven't we discussed muons yet?

- Muons are created in the cosmic ray interactions with the atmosphere
- They have large energies (>2 GeV)

Air Showers make muons

 Many particles created in collisions with atmosphere (Air Shower) ~ 15 km above surface

- Most particles interact strongly and stop
- some decay (to muons); muons live long enough to reach surface
- Muon lifetime is ~2 microseconds at speed of light that is 600m
- Why do muons make it to ground?
 (demonstrates Einstein's Special Relativity) With a comparation of the of Science

QuarkNet

quarks make up protons and neutrons using Strong force

leptons don't feel the strong force

Science

Muons at the surface

- Muons discovered (identified in air showers) in 1936 (Anderson and Neddermeyer). Rabi "Who ordered that?"
- Fundamental particle: charged, unstable lepton like a heavy (0.105 GeV) electron
- Particle sweet spot
 - does notice nuclei (lepton); Loses energy through atmosphere gradually
 - Lives long enough to reach surface
 - Massive (unlike electron) travels far

Muon momentum spectrum at surface

Detector QuarkNet

- Single muon passes through all detectors
- Energy > 2 GeV
- Electronics selects events with 3 hit counters
- GPS gives absolute time
- A detector stack can point
- Measure Muon Speed with Time of Flight (TOF)

What can we measure?

Muons tell us about the cosmic rays, but we also can study the muons

- Rates of muons over time (day/night)
- Rates of muons versus angle
- Lifetime of muon
- Size of Cosmic Ray Air Shower
- Time Dilation
- Speed of muons

Speed of Muon

- Let's measure average speed of a collection of muons that schools have recorded with their detectors
- Ultimate speed in the universe (speed of light)
- Question to keep in mind. Why would all muons travel at the same speed?

GBS HS students published a measurement of the muon's speed

Science Office of Science

Mark Adams QuarkNet Cosmic Rays 23

Our Muon Speed Data

- We will simplify the measurement today. Our data has had their signal cable lengths artificially adjusted in software so that ΔT = 0 when the counters are next to each other (i.e. no distance between the pair for the muon to travel)
- Result is that ∆T of any pair represents the travel time for the muon

Signal vs Time

Data saved: beginning and end of pulse

QuarkNet

QuarkNet Data Format

Time of the hit of each counter recorded to 1.25 ns precision

Relative time of counters in 1 DAQ to 1.25ns least count

3 triggered events! Each line represent hit information in a 10ns time slice

- Detector 6674 in basement
- Next to sump pump that causes lots of random noise

Quarknet e-Lab i2u2.org

Welcome: Join an international collaboration of high school students to study cosmic rays.

Go to i2u2.org and login in as

guest

Click to use Flash 🌖

	g				
Username:					
Password:					
	Login				
To explore our website, log in as guest					
Need a student login?					
Ask your teacher.					
Need a teacher login?					
Contact e-labs@fnal.gov					

Log in

Select TOF Analysis

Home: Join an international collaboration of high school students to study cosmic rays.

View News Alert

Project Map: To navigate the Cosmic Ray e-Lab, follow the path; complete the milestones. Hover over each hot spot to preview; click to open. Along the main line are milestone seminars, opportunities to check how your work is going. Project milestones are on the four branch lines.

Milestones (text version)

Choose different files

- Select a file of Detector 6674 on any day in April or May.
- choose a file based on the first letter of your last name:
- Adams choose ~April 1st
- Lincoln choose April 30th
- Washington choose ~ May 28th

File Selection

E Log out

Cosmic Ray e-Lab

	Project Map Lib		y Upic	ad	Data		Site Map	Assessment
	View Data	Performance	Flux	Shower	Lifetim	ne Tof	F View Plots	Analyses

Choose data for the time of flight study.

TOF Control Panel

33

)	Cosmic Ray e-Lab				🧪 👞 E Log out				
	Project Map	Library	Jpload	Data	Posters	Site N	Map /	Assessment	
<u>(</u>	10	Text Version	Cool Science	About	Us				
Time	of Flight study								
DAQ#	You're ar	nalyzing	Chan1 events	Chan2 events	Chan3 events	Chan4 events	Ra	aw Data	
6674	Fermilab Test Array Ma Total (1 files 93	y 3, 2020 00:00:00 UTC 304362 events)	1882584 1882584	1862669 1862669	1903079 1903079	3656030 3656030	View Stat	istics <u>Geometry</u> files	
		A	nalyze the same	files in perform	nance				
	Clic belo ▼ Ana	k Analyze to use the de w. alysis Controls ? Lo ? Event Ga ? Channel Coinci ? Define Soft Triggers Require Cha Veto Cha	efault parameters. cation: remma te (ns): 15 is ence: 3 s annels: 1 2 2	Control the an	tavia, IL (6674) Set wid Set nu Hardw	eding the options the of the of mber of are rec	∆T p סf כסו ןuired	lot (ns) unters ro d 3 – pic	> 15ns equired k 3 or 4
	► Plo	t Controls	Ana	lyze					
		Office of Science			Ma	rk Adams	Quark	Net Cosmi	c Rays

TOF results

QuarkNet

Set

Where is position information?

GPS Coordinates

Latitude: 41:53.365920 N

Visualize geometry

Longitude: 088:19.585297 W

GPS Coordinates Tutorial 🛞 Find GPS Coordinates

3 clicks to find Geometry of the file you select

Calculate Speed

 $\Delta t = 5.29$ ns with error of 2.96 ns Error means 68% of results fall within mean-error to mean+error: Large error 2.33->8.25ns

Calculate the speed: Speed = $\Delta z / \Delta t = 1.51 \text{m}/5.29 \text{ns}$ Average muon speed = 2.85 x10⁸m/s

Why is this result so close to accepted value of 2.95 x10⁸m/s?

Error on the mean of all muons is much smaller (related to 1/sqrt(N))

Advanced Controls will show mean

Mark Adams QuarkNet Cosmic Rays 36

You measured maximum speed in the universe!

- Please share your results via chat.
- If we combined our analyses, the measurement would improve
- Wait! -

- Why should all muons travel at the same speed?
- Baseballs, cats and cars don't.

You measured maximum speed in the universe!

- Why should all muons travel at the same speed?
- Answer is due to Special Relativity -Particles can be accelerated to very high energies but their speed asymptotically approaches c:
 - $-Momentum = M * v * 1/sqrt(1-v^2/c^2)$
 - Related faster particles go, longer they live as measured by us (time dilation)

Questions; Extra

- Can you improve the measurement?
 Share ideas via chat
- Ten muons/sec go through your body, do they hurt?

• Want to do more e-Lab studies?

 – quarknet.org analysis link
 https://quarknet.org/content/resourcescosmic-ray-analyses-online

- Contact adams@fnal.gov

Conclusions

- Cosmic Rays rain down on the Earth from supernovae and Active Galaxies
- High schools use QuarkNet detectors to study cosmic rays and their resulting muons
- 100,000 files of data are available in e-Lab for all to study
- I hope you enjoyed your measurement of the maximum speed in the Universe
- I will stay around to answer your questions

Extra Slides

Flux - Rate versus time

Flux Study

A week of data Note: no big day/night effect

> Not from Sun

