Decay diagrams Activity

- Colored quark == u
- Anti-colored antiquark == u
- Color-neutral objects
 - Baryons: Red-Green-Blue quarks combined (or Antibaryons: antiRed-antiGreen-antiBlue)
 - Mesons: Any 'color + anti-color'
- Using the tables of baryons and mesons*+, identify
 - One baryon that decays weakly and one that decays strongly
 - One meson that decay weakly and one that decays strongly
- On the next slide fill in your four decays

+List of conventional mesons & quark content https://en.wikipedia.org/wiki/List of mesons (see "Meson properties")

Quark	charge			
d	-1/3			
u	+2/3			
S	-1/3			
С	+2/3			
b	-1/3			
t	+2/3 ₁			

^{*} Particles that decay via the strong interaction have lifetime $\sim 10^{-23}$ sec, whereas those that decay weakly (typically) have lifetime $> 10^{-14}$ sec. Skip particles that decay to photons (those are electromagnetic decays)

⁺List of conventional baryons & quark content https://en.wikipedia.org/wiki/List of baryons

Fill in the table

First row is provided as an example

Decay	Products	lun	tο	3١
Decay	Products	(up	ιΟ	3)

Parent particle	Quark content	Mass (MeV/c²)	Lifetime (sec)	Strong or Weak decay?	#1 (quarks)	#2 (quarks)	#3 (quarks)
Δ^{++}	иии	1232	5.63x10 ⁻²⁴	Strong	p(uud)	$\pi^+(u\bar{d})$	

Now, using the rules of weak & strong decays, make decay diagrams

- ☐ <u>Always</u> involve gluons
- Gluons can be "radiated" off of any quark, and produce a quark-antiquark pair of the same quark type. (e.g. $u\bar{u}$)
- ☐ The quarks produced can have any combination of color-anticolor, but final state hadrons must be color neutral.

Weak decays:

- \square Always involve W⁺ or W⁻ bosons.
- Allow heavy quarks to decay to lighter ones, <u>but</u> the charge must change by 1 unit (and charge must be conserved in the process), e.g. $b \rightarrow cW^-$ (Also allows heavier μ^- and τ^- leptons to decay.)
- □ W⁻ bosons decay to either quarks: $W^- \to \bar{u}d$, $\bar{c}s$, $\bar{u}s$, $\bar{c}d$, or *pairs of leptons:* $e^-\bar{v}_e$, $\mu^-\bar{v}_\mu$, $\tau^-\bar{v}_\tau$, (for W⁺, replace all particles with their antiparticles)

Additional decays you can use

Some weak decays

$$D^0(c\bar{u}) \to K^-\pi^+$$

$$D^0(c\bar{u})\to K^-\mu^+\bar{\nu}_\mu$$

$$D^+(c\bar{u}) \rightarrow \bar{K}^0 e^+ \bar{\nu}_e$$

$$D_s^+ \to \phi \pi^+$$

$$B^-(b\bar{u}) \rightarrow D^0(c\bar{u}) \pi^-$$

$$B^-(b\bar{u}) \to D^0(c\bar{u}) K^-$$

$$B^-(b\bar{u}) \rightarrow D^0(c\bar{u})D_s^-(\bar{c}s)$$

$$B_s^0 \rightarrow D_s^+ \pi^-$$

$$\Lambda_c^+ \to \Lambda K^+$$

$$\Lambda_b^0 \to \Lambda_c^+ \pi^-$$

$$\Lambda_h^0 \to J/\psi \Lambda$$

$$\Xi_h^- \to J/\psi \Xi^-$$

$$\Omega_b^- \to J/\psi \; \Omega^-$$

Some strong decays

$$K^{*-} \to K^- \pi^0$$

$$D^{*+}(c\bar{d}) \rightarrow D^0\pi^+$$

$$D^{*+}(c\bar{d})\to D^+\pi^0$$

$$D_s^{*+} \rightarrow D_s^+ \pi^0$$

$$\Upsilon(b\bar{b}) \to B^+B^-$$

- ☐ If the quark content not listed above, you should be able to find it in the Wikipedia tables (or ask one of us)
- □ Note: On the Wiki page, the quark content is shown for the particle. For the antiparticle, you have to replace all quarks with antiquarks, and vice versa.